Hydraulic Proportional and Closed Loop System Design

Neal Hanson Product Manager Industrial Valves and Electrohydraulics

Contents

- 1. Electrohydraulic Principles
- 2. Proportional Valve
 - Spools
 - Nominal Flows
 - Pressure Drops
 - Power Limits
 - Performance Terms
- 3. Servo-Solenoid Valves
 - Advantages
 - Differences

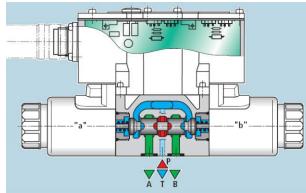
2

Application Hints

- 4. Servo Valves
 - Principles
 - Features
- 5. Amplifiers
 - Types
 - Optimizing Features
- 6. Control Systems
 - Valve Selection
 - Closed Loop
- 7. Updates
 - Resources
 - Other Updates

Proportional Components

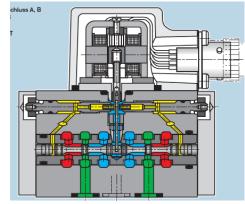
- Operate under electronic control
 - Pressure Relief
 - Pressure Reducing
 - Throttling
 - Flow Control
 - Directional Control
 - Pump Control
 - Flow
 - Pressure
 - HP Limiting



4 Main Control Principles

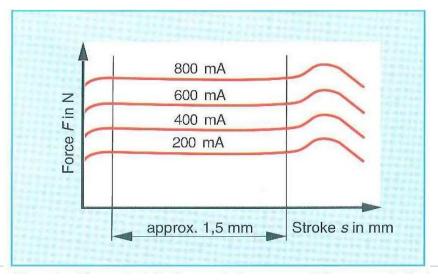
Force Controlled

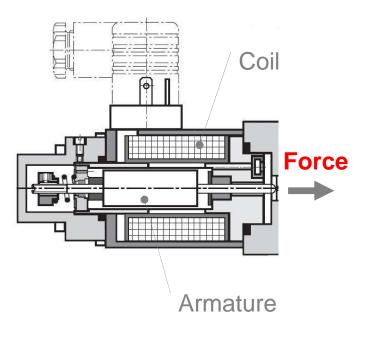
Position Controlled Solenoid



4

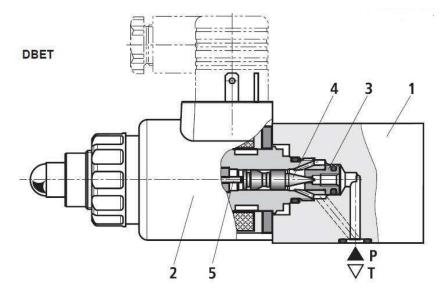
Servo Solenoid

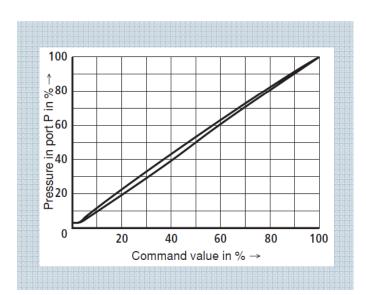

Servo Valves



Proportional Force Solenoid

- Solenoid current is proportional to armature force, unlike on/off solenoid
- This proportional force is linear within a working stroke (approx 1.5 mm)
- Given a constant current, solenoid force remains constant within the working stroke

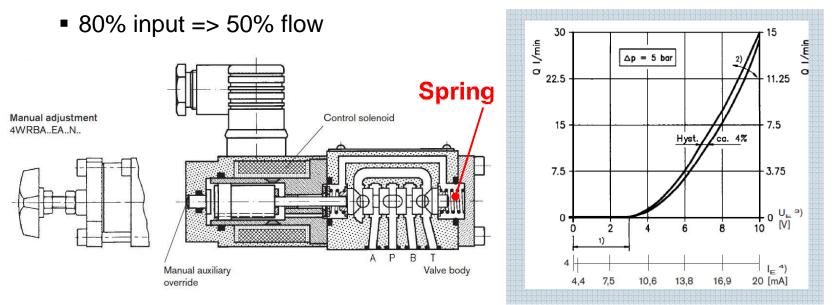




6

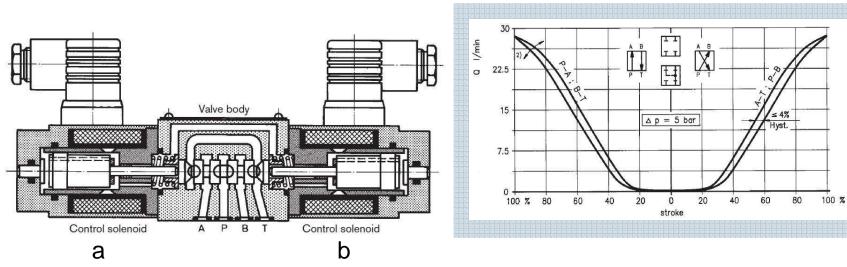
Proportional Solenoid on a Pressure Relief

- Solenoid force opposed by pressure P x A (area seat 3)
- Input to amplifier changes solenoid current (output Force)
 - 20% input => 20% pressure
 - 80% input => 80% pressure



Proportional Solenoid on a Throttle Valve

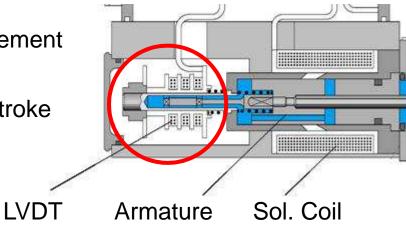
- Solenoid force opposed by spring force = rate x displacement
- Spool position is constant, when forces are balanced
- Input (coil current) is directly proportional to output force
 - 40% input => 5% flow (due to spool overlap, deadband)



Proportional Solenoids on a Directional Valve

- Solenoid force vs. spring force positions spool
- Select one solenoid to control direction and flow
 - 40% input Sol-a => 15% flow P-to-B
 - 80% input Sol-b => 80% flow P-to-A
- Hysteresis <6 %

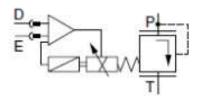
8

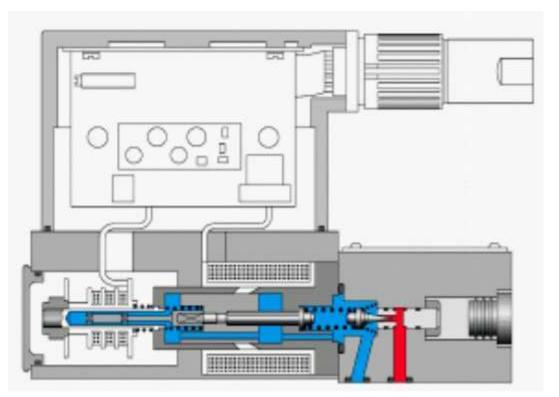


Neal Hanson | 3/18/2011 | Product Management | © Bosch Rexroth AG 2010. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

a <u>XIIII</u> b

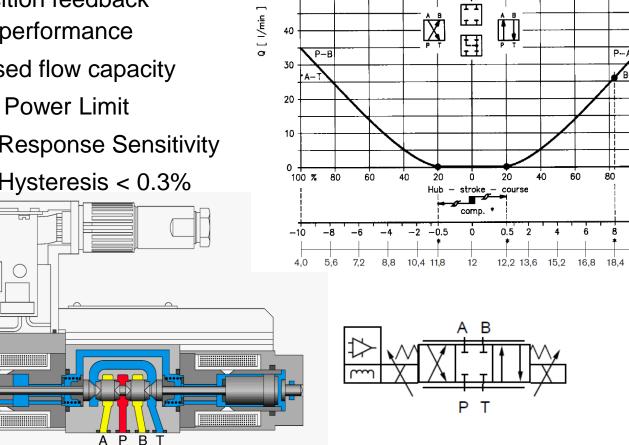
Stroke Controlled Solenoid


- Improve accuracy and performance with position feedback on solenoid
- LVDT Linear Variable Displacement Transformer
 - Position transducer short stroke
 - High resolution
 - Non-contacting
 - Robust



Stroke Controlled Pressure Relief

- Adding LVDT position feedback greatly improves resolution
- 0.2% Hysteresis



100

11

Stroke Controlled Directional Valve

- LVDT position feedback improves performance
 - Increased flow capacity
 - Higher Power Limit
 - Better Response Sensitivity
 - Better Hysteresis < 0.3%</p>

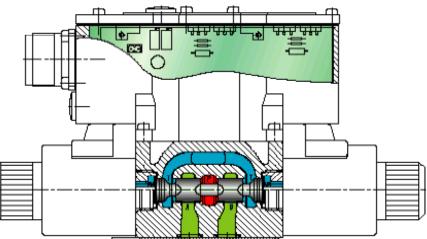
 $\Delta p = 5 \text{ bar}$

50

 $Q_{A}: Q_{B} = (32:32) \ 1/min.$

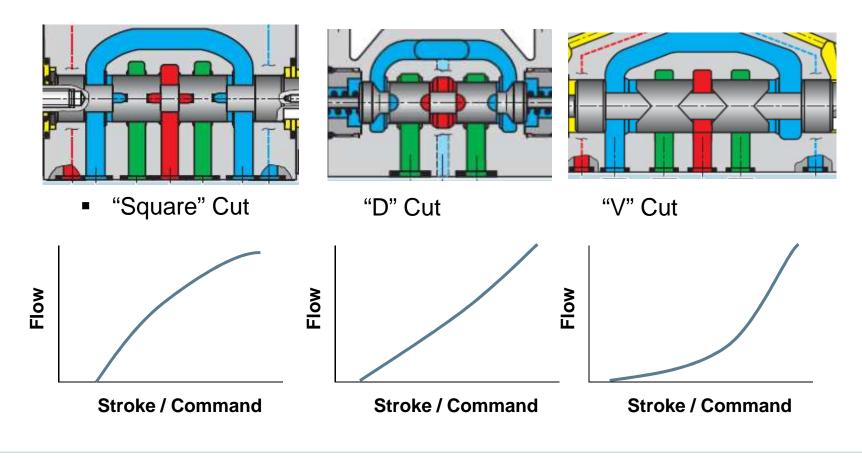
P--/

B


100 %

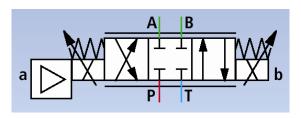
10 U_{D-E} [V] ¹)

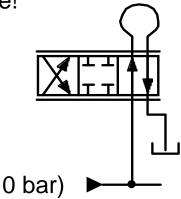
20 I_{D-E} [mA]²)


Construction of Proportional Valves

- Proportional spools slide in cast body
 - No sleeve, in main stage (unlike a servo valve)
 - Robust construction similar to on/off directional valves
 - High flow capacity
 - Low cost
- Throttle area normally formed by notches cut into spool
- Notch size and geometry determine flow capacity for a given housing

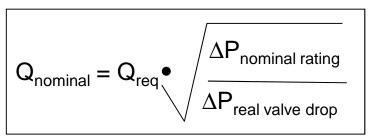
Notch shape determines flow characteristic

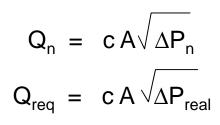



Nominal Flow Rating of Proportionals

- "Nominal Flow" for proportional spools is rated at ∆p = 10 bar (145 psi) total, 5 bar per land
- Example 4WRA "Nominal Flow" is 7 to 60 LPM rated @ ∆p =10 bar (145 psi)
- Only 145 psi pressure drop across valve!
 - This is a not typical for applications
 - Avoid to common mistake:
 Supersizing spool = poor resolution

145 psi (10 bar)



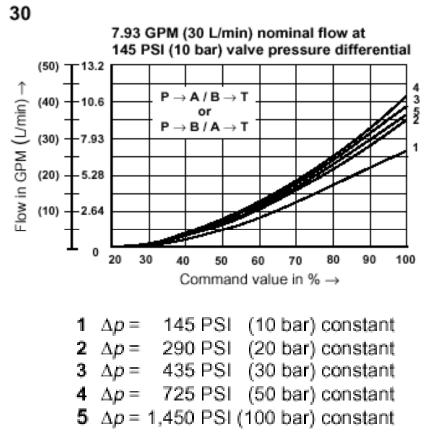


Flow Rating of Proportional Valves

- Required Flow is normally given, Q_{req}
- Nominal value drop $\Delta p = 10$ bar (145 psi)
- You must estimate pressure drops,
 p_{system} p_{load} = p_{valve}
- To find a spool, solve for "Nominal flow"
 - Estimate required valve pressure drop
 - Q is proportional to square root of corresponding ∆p

 Then, go to valve data sheet and select the closest spool to this value

c = orifice flow co-efficient A = Area of orifice (same values for both equations)

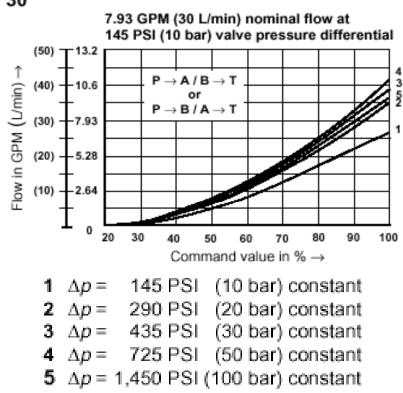


Using Flow Diagrams

 Estimate ∆p required across valve in both flow paths,

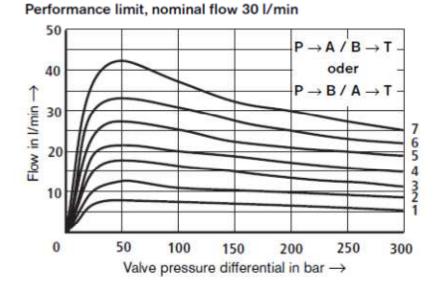
System pressure – Load pressure

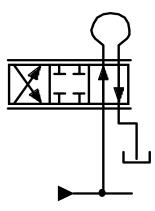
 Each housing size may have several spool flow options
 Find a spool curve that fits the target nominal flow around 90%
 Command, with a reasonable Δp, close the your estimated valve Δp



Can Valve Pressure Drop Be Too High?

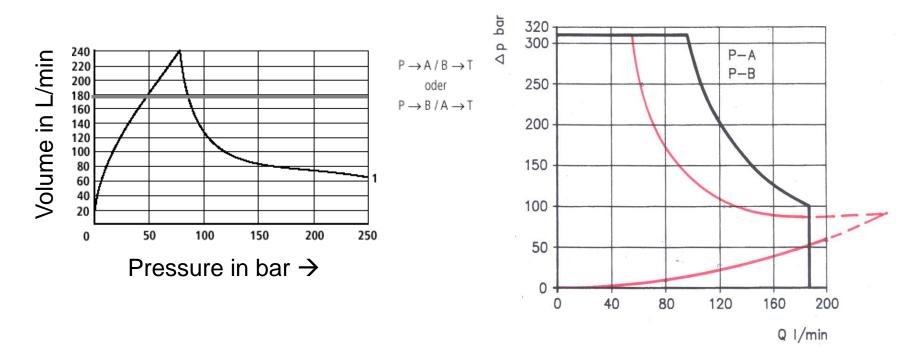
- Yes, valve ∆p over 50% system pressure is high
- Avoid over-flowing valve! curve 5
- High flow forces try to center spool on direct operated proportional valves
 High ∆p in a proportional valve creates a high rotational force
- Anti-Rotation design prevents spinning spools, but limit time at extreme conditions to avoid problems
- Sleeve and Spool valves do not have rotational forces


30



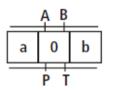
Power Limits

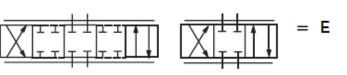
- All direct operated proportional valves have Power Limits ($Q_{valve} \cdot \Delta p_{valve}$)
- Bernoulli forces try to center spool at high Δp_v
- Power Limit decreases if flows are unequal

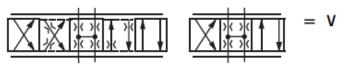


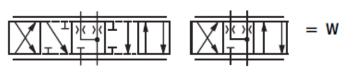
Com. value = 40 %
 Com. value = 50 %
 Com. value = 60 %
 Com. value = 70 %
 Com. value = 80 %
 Com. value = 90 %
 Com. value = 100 %

Power Limits


- Power limit diagrams may be plotted in different ways, but they represent the same thing
- Sometimes performance limits are only listed in a table

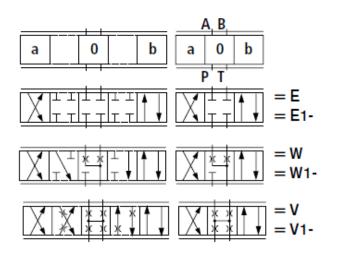


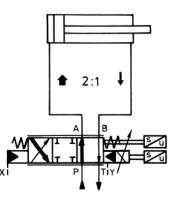

Common Proportional Spools


- E-spool: All ports blocked
 - Overlap 10% to 20% on each side
 - Differential cylinder may creep, due to leakage in cylinder and spool
 - Closed loop positioning requires a more advanced controller
- V-spool: No deadband
 - 1% underlap allows housing variation
 - Only for closed loop control
- W-spool: 2% to 3% open A to T, B to T
 - Primarily for differential cylinders
 - Only for open loop applications

Spool symbols

Asymmetrical Spools

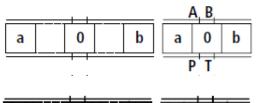

- Asymmetric spools like E1-, W1-, V1-
 - 2:1 flow area (4 notches vs. 2 notches)
 - For differential area cylinders
- Balances ∆p across each flow path, due to unequal flows to/from cylinder
 - Can prevent cylinder cavitation
 - May improve cycle time

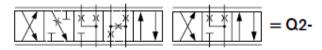

valves

- Better deceleration
- Shorter reversal time
- This is more important with larger flow

With spool symbol E1-, W1-, V1-: $P \rightarrow A : q_{Vmax} \qquad B \rightarrow T: q_V/2$

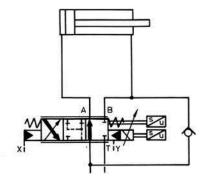
 $P \rightarrow B: q_v/2 \qquad A \rightarrow T: q_{vmax}$

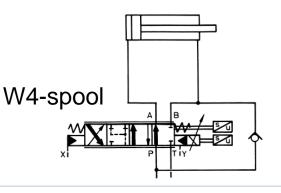




Additional Spool Types

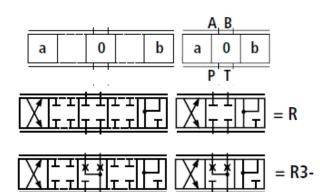
- W6-spool: improved W-spool
 - crossover all ports are closed (to stop)
 - then decompress at center, open 2%
 A to T and B to T
- W8-spool: improved W1-spool, like W6 but 2:1 flow area
- Q2-spool: for injection molding cylinders

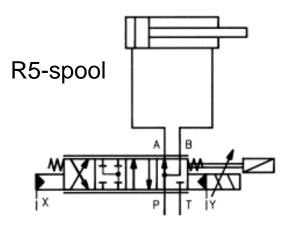




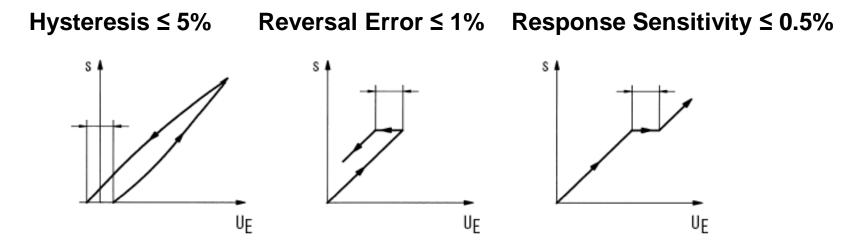
Regen Spools with external bypass

- W3-spool: hydraulic regeneration extends cylinder quickly. Rod side is blocked by B port. High pressure on rod end pushes flow over external check valve
 - Fast traverse. but rod pressure is high!
 - Tonnage reduced!
 Extending force = rod area x pressure bore
- W9-spool: improved W3 (decel like W8)
- W4-spool: 4-position, regen spool
 - Full tonnage below 33% (P-to-A and P-to-B, like W1)
 - Regen above 33% (P-to-A and B blocked, like W3)


W3-spool W9-spool

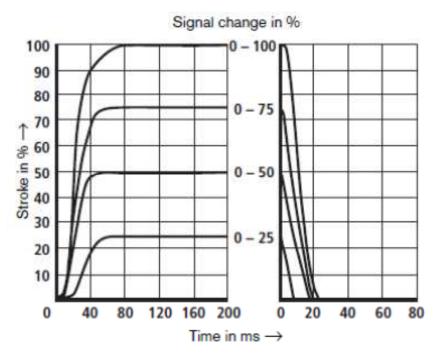


Spools with Internal Regen


- R-spool: Internal hydraulic regeneration
 - Combines B to P in spool!
 - Blocked center, so cylinder could creep
- R3-spool: Internal regen
 - connects B-to-P path inside housing
 - Center P blocked, A and B to T
- R5-spool: Internal regen with 4-position press-regen spool
 - P-to-A full tonnage below 33%
 - Regen above 33% (like R3)
- Internal regen flow can not exceed limits of main valve (lower flow than external regen)

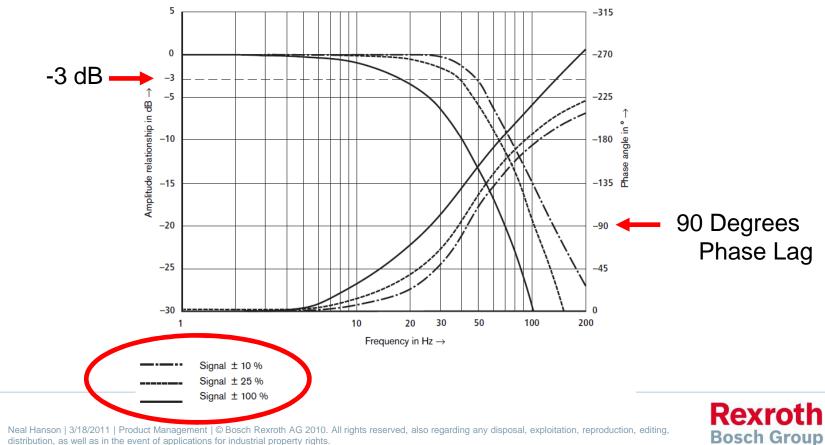
Performance Terms

- Hysteresis is max. position error which depends on direction history
- Reversal Error is the smallest signal that moves spool in the opposite direction
- Response Sensitivity is the smallest signal to move spool in the same direction, after stopping (resolution of valve)


Performance Terms

- Repeatability Ability to achieve the same spool position (or pressure) given the same valve, under the same conditions, with the same command input
 - Force controlled valves: 2% to 3%
 - Stroke controlled: 0.1% to 0.5%
 - Typically half the Hysteresis
- Question... if you need to achieve 100 psi pressure repeatability on a system operating at 5000 psi, should you use a proportional relief valve with a repeatability of 3%?
 - No... maximum repeatability is 0.03 x 5000 psi = 150 psi

Step Response

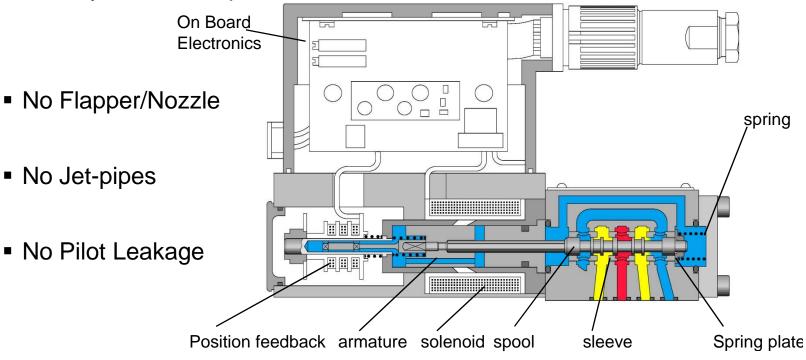

- Time for spool transition given a stepped input
- Standard test conditions (fluid temp, pressure) may not match your application
- If only given a time, you must know measurement criteria
 - 0 to 100%
 - 10 to 90%,
 - 20% to 80%

Bode Diagrams

- Valve frequency response @ -3dB amplitude
- Phase Lag @ -90 degrees

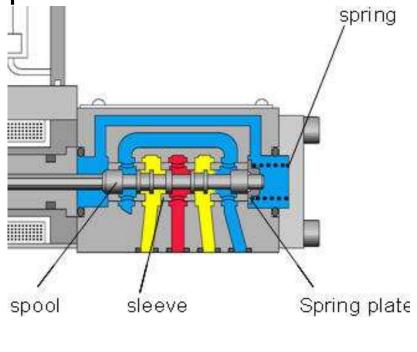
Tester for Integrated Electronic Valves

- VT-VETSY-1-1X/1-2-1-1-0/USA
 - R978050422
- Includes 24vdc power supply with US power cord, 2 cables for 7-pin, servo adapter, VET tester



Servo Solenoid Basics

Servo Solenoid – Direct Operated


- Very Fast Stroke Solenoid
 - Directly Positions Spool

Servo Solenoid – Direct Operated

- Spool and Sleeve Assembly
 - Zero Overlap
 - Accurate
 - Symmetrical
 - Linear
- Normal filtration
- Main sleeve means Nominal Flow @ ∆p 70 bar or 1000 psi !
 - 2 to 100 Lpm (size 6 & 10) like a Servo Valve @ 70 bar Δp

4WRPEH - Direct Operated

Nominal Flow Conversion

- Easily convert between
 - Sleeve/Spool rated Nominal Flow @1000 psi Δp
 - Proportional rated Nominal Flow @ 145 psi Δp

$$\sqrt{\frac{70}{10}} = \sqrt{7}$$

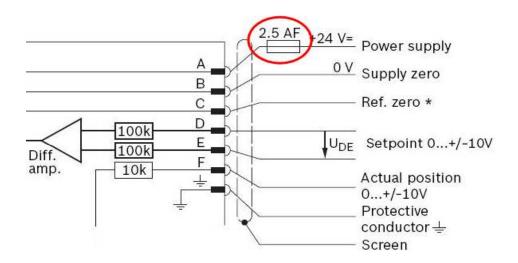
- Servo to Proportional nominal rating, divide by square root 7
- Proportional to Servo nominal rating, multiply by square root 7

Spool/Sleeve in Direct Operated Servo Solenoid

- Zero overlap matched spool and sleeve
- Failsafe position with overlap, by spring offset during power off / fault), which may eliminate need for an external blocking valve

Servo Solenoid - Direct Operated

- Smooth cross-over (through center) like Servo, important to
- Most Reliable OBE Available
- 25g mechanical shock and vibration for 24 hours in 3 Axis
- Long Service Life
- 60 to 100 Hz @ -90 Deg, small signal
- Ideal for many closed loop applications



4WRPH6, 4WRPEH6, 4WRPEH10 RE29035, RE29037

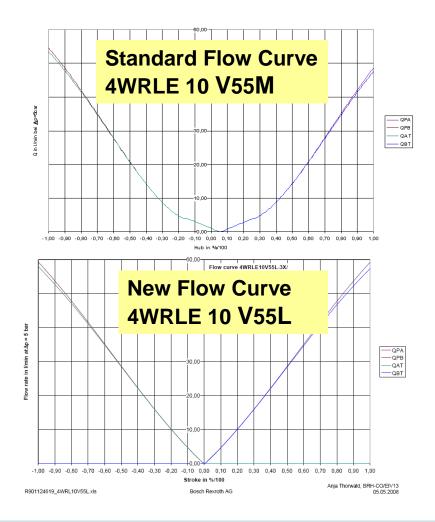
Fuse OBE on Servo Solenoids

Protect each OBE with 2.5 Amp, Fast acting Fuse!

Pilot Operated Servo Solenoid Valves

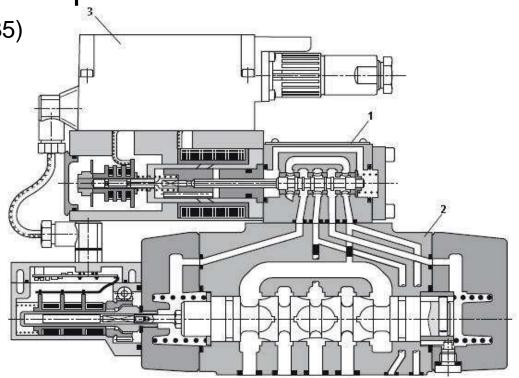
Servo Solenoid – Pilot Operated

- Main stage has proportional spool in cast housing
- Pilot stage has sleeve/spool (4WRPEH)
- Nominal Flow rated at 10 bar ∆p for pilot operated Servo Solenoid valves
- E, W, V, Q4-spools like proportional
- V-spool at spring-center has 1 to 6% offset P-to-B
- Failsafe of pilot (C3) allows main spool to spring center



4WRLE RE 29088 RE 29089

Linear Characteristic


- V-Spool with Linear flow characteristic can improve system performance
- Higher P-gain in controller reduces following error
- Easier tuning of close loop application

Servo Solenoid – Pilot Operated

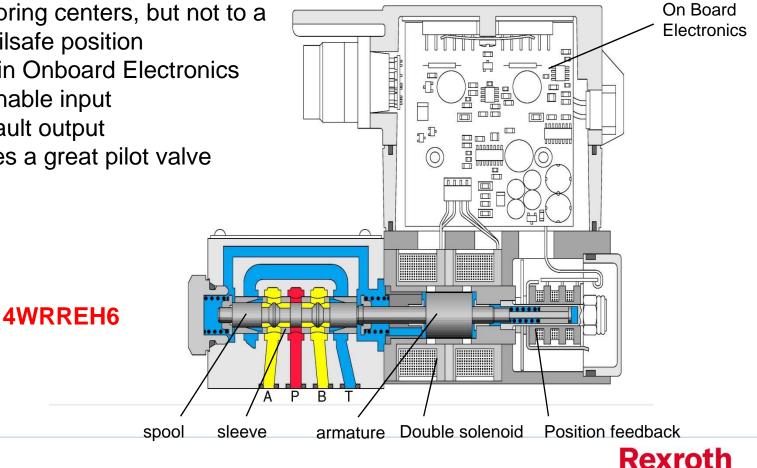
- Nominal Flow (Size 10 to 35)
 - 50 to 1100 LPM
 @ 10 bar or 145 psi ∆p, like a Proportional
- Main stage has LVDT feedback
- Many Same Advantages
 - Robust
 - Reliable

4WRLE - Pilot Operated

High Response Servo Solenoid Valves

High Response Servo Solenoid - Direct Op

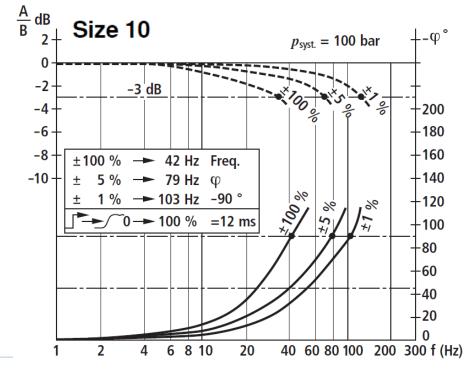
- 4WRREH 6: Push-pull, servo solenoid for faster response than 4WRPEH 6
 - 250 Hz @ -90 deg, small signal
 - Nearly as fast as 4WS2EM6
- Sleeve/spool assembly
- Nominal Flow 2 to 40 LPM @ 70 bar Δp



4WRREH6

RE29041

High Response Servo Solenoid - Direct Op


- Failsafe of spool is not defined
 - Spring centers, but not to a failsafe position
- **12-Pin Onboard Electronics**
 - Enable input
 - Fault output
- Makes a great pilot valve

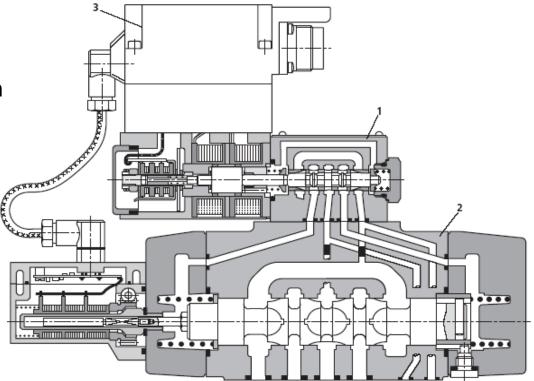


Bosch Group

High Response Servo Solenoid - Pilot Op

- 4WRVE higher dynamics
 - Pilot 4WRREH 6
 - Main Stage Same as 4WRL

4WRVE

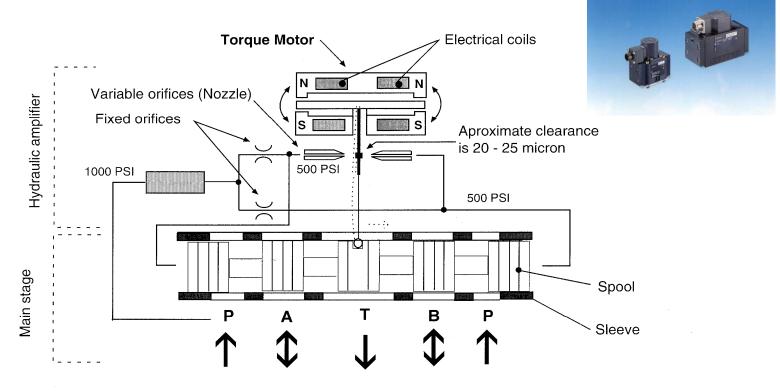

Neal Hanson | 3/18/2011 | Product Management | © Bosch Rexroth AG 2010. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

44

High Response Servo Solenoid - Pilot Op

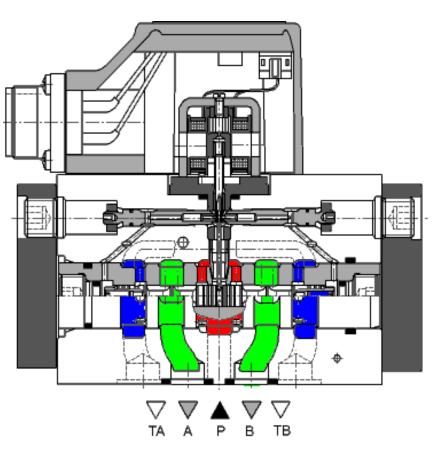
- 12-pin Elec. Connector
- No Failsafe Position (Center main spool with Z4WE6 under pilot)
- Higher performance
- Sizes 10 to 25 Only
- Linear V-spool characteristic available
- Extremely Reliable OBE

45



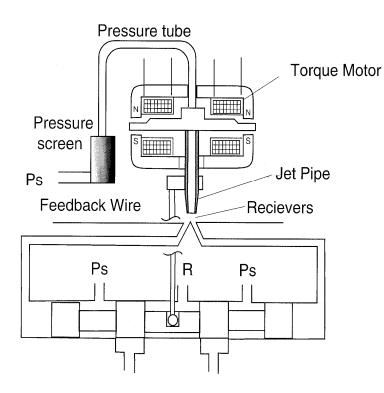
Servo Valves Basics

Flapper-Nozzle Servo



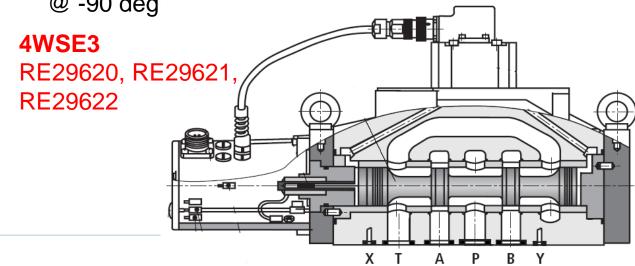
4WS2EM Servos

- Servo Valve always has a Sleeve and Spool in Main Stage
- Servo Torque Motor and Orifices Control Pressure Balance to Position Main Spool
- Small Signal Response @ -90 degrees = 200 to 300 Hz

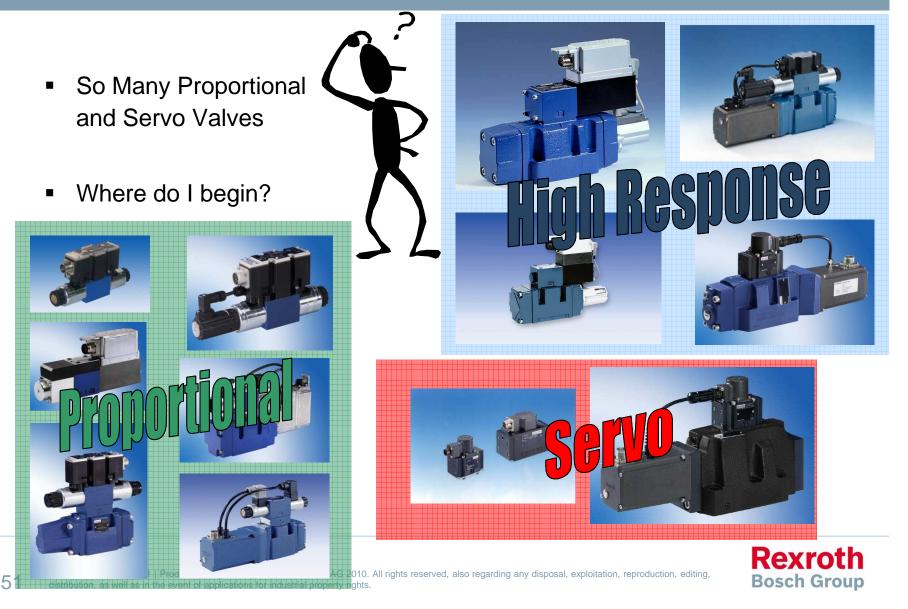


Jet Pipe Servo

Not from Bosch Rexroth


- The pressure tube feeds oil to the jet pipe In the null position the jet pipe sprays oil equally to two recievers (250 micron).
- The torque motor moves the jet pipe making the oil pressure in one reciever greater than the other, Thus causing spool movement.
- Feedback linkage, similar to that of the flapper nozzle, centers the jet pipe after the spool has moved (1-3% hysteresis).
- There is a zero adjustment on the torque motor.
- There is a zero adjustment on the Main stage of the valve.
- Tank line pressure spikes affect the null.
- pressure line spikes affect the null.
- Wear occurs on the recievers.
- Internal filter requires cleaning.

4WSE3E (16,25, 32) Servo


- Flows to 1000 Lpm at 70 bar Δp
- Sleeve/Spool in main stage
- Cast body reduces weight & cost
- Long life with HFC-water glycol, at high pressures
- Small Signal Response 100 to 140 Hz
 @ -90 deg⁻⁻⁻⁻

Proportional Valves and High Response Valves

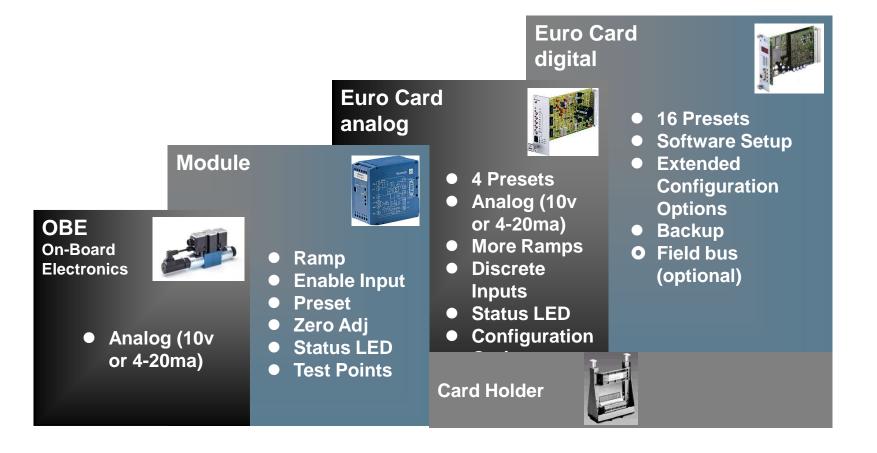
Considerations for Basic Applications

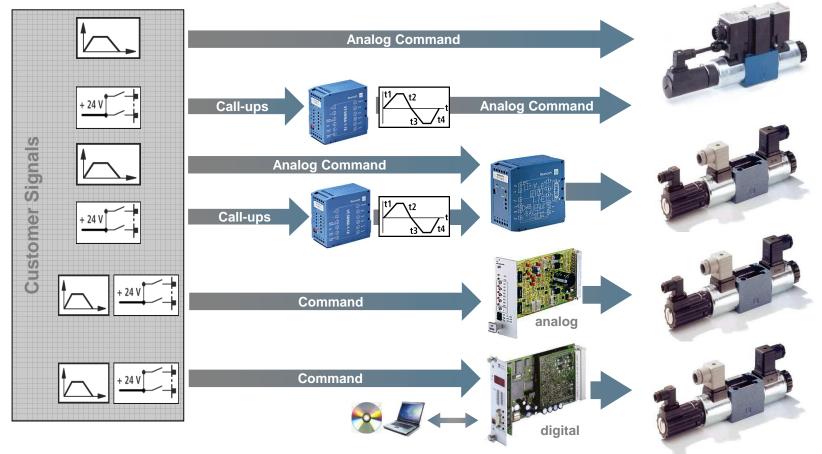
- Most Important Issues Are
 - Flow Requirement (Easy to Define)
 - Cycle Time or Desired Actuator Speed
 - Limits by Pump Flow, HP, Budget
 - Dynamic Performance
 - Acceleration
 - Repeatable Deceleration
 - Fast and Accurate (Productivity)
 - Especially in Closed Loop Applications
 - Higher performance normally requires Closed Loop

Amplifiers Basics for Proportional Valves

Amplifier Format

- Different styles for application requirements
 - Modules (rail mount)
 - Plug-in Euro Cards
 - On-Board Electronics
 - Plug Amplifiers



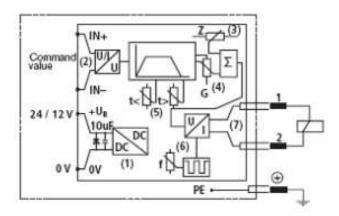


Amplifier Functionality

Amplifier Configuration Flexibility

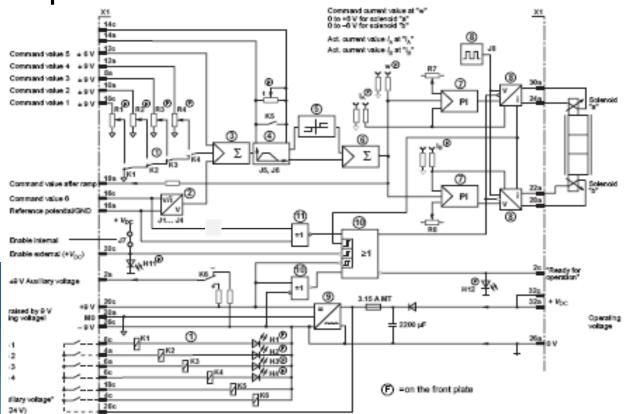
On-Board Electronics

- Plug & play No user adjustments required
- Factory set calibration simplifies installation and replacement



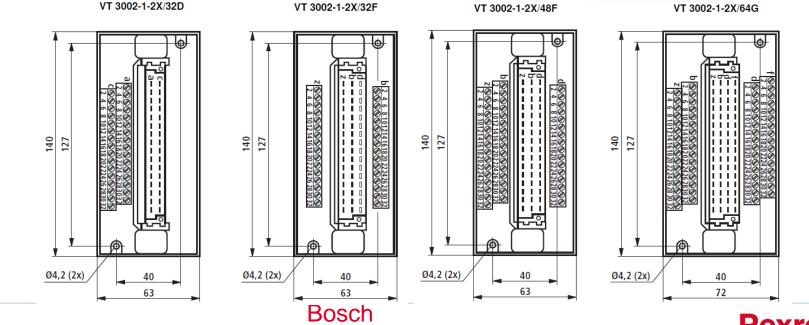
Plug Amplifiers

- Plug amplifiers are only possible with single, force solenoids (like a proportional relief valve)
- M12 electrical connector for simple installation with molded cables
- Low cost



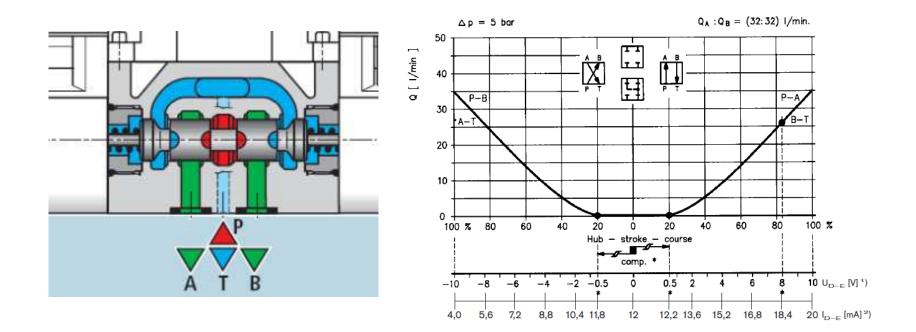
Euro Card Amplifiers

- More features included
- Match edge connector to correct card holder

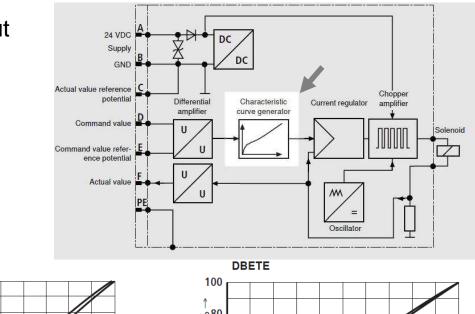


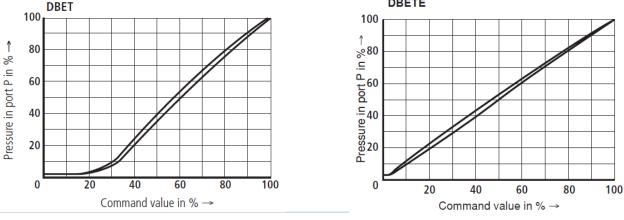
Card Holders

- Confirm edge connector form required on valve data sheet
 - 32D, 32F, 48F, 64G



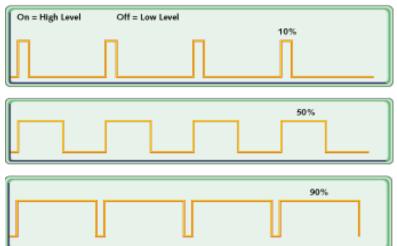
Jump Compensation in Amplifier


- E, W-spools have ±10% to ±20% overlap
- Jump Compensation reduces this deadband to about ±3 to ±5%



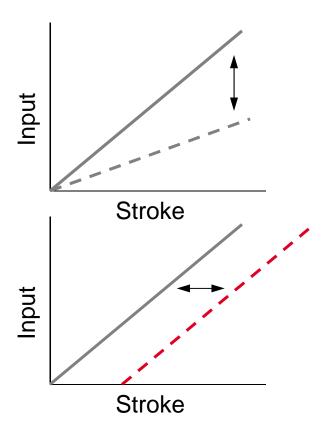
Characteristic Curve Generator

- Linearizes valve output
- Optimized for specific valve type



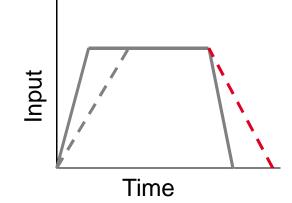
Pulse Width Modulation

- PWM adjusts the average output power to a DC prop. solenoid by switching a fixed DC voltage on-off
- On vs. Off time varies, within a fixed period
- PWM frequency is typically 100 Hz to 350 Hz, to minimize hysteresis
- Frequency must be high enough, so output is not disturbed
- Normally a factory setting, but some amplifiers permit user adjustment
- PWM is efficient, reducing heat generation


Dither

- Dither is used to create a PWM signal on proportional amplifiers
- Servo valve amplifiers do not require PWM, so a dither signal (sine wave) adds to the desired DC output
- Dither frequency is selected to minimize static friction, improving hysteresis

Amplifier Adjustments


- Gain
 - Changes input vs. output ratio
 - Limits maximum output
- Zero (Null)
 - Offsets spool into a "0" hydraulic condition due to manufacturing tolerances

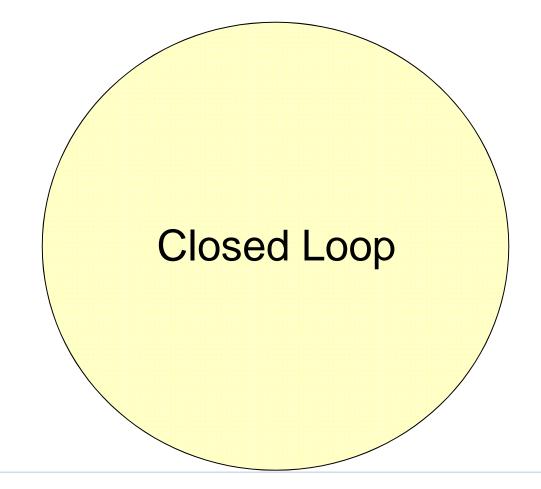
Amplifier Adjustments

- Ramp Time
 - Single ramp controls acceleration and deceleration
 - Dual ramps control acceleration (ramp up) separate from deceleration (ramp down)
 - Quadrant ramps change all 4 quadrants independently

67

Amplifier Overview RE29012-V

Valve type	Com- ponent series	Data sheet	Solenoid	Size	Electronics type	Design	Analog/ Digital	Data sheet	Card holder, Data sheet 29928
				Prop	ortional pressure control	valves			
				F	Proportional pressure relief valv	/es			
				d	irect operated, subplate mount	ing			
DBETX	1X	29161	1	6	VT-SSPA1-508-20/	Plug	Analog	30264	
					VT-SSPA1-525-20/	Plug	Analog	30264	
					VT-MSPA1-508-10/	Module	Analog	30222	
					VT-MSPA1-525-10/	Module	Analog	30222	
					VT-VSPA1-508-10/	Card	Analog	30109	VT 3002-1-2X/32F
					VT-VSPA1-525-10/	Card	Analog	30109	VT 3002-1-2X/32F
	1X	29164	1	6	VT-SSPA1-1-1X/	Plug	Analog	30116	
DBEP6(A/B)					VT 2000-5X/	Card	Analog	29904	VT 3002-1-2X/32D
					VT-VSPA1-1-1X/	Card	Analog	30111	VT 3002-1-2X/32D
			1 or 2		VT 11118-1X/	Module	Analog	30218	
					VT 3000-3X/	Card	Analog	29935	VT 3002-1-2X/32D
					VT-VSPD-1-2X/	Card	Digital	30523	VT 3002-1-2X/64G
DBET	6X	29162	1	6	VT-SSPA1-1-1X/	Plug	Analog	30116	
					VT-MSPA1-1-1X/	Module	Analog	30223	
					VT-VSPA1-2-1X	Card	Analog	30115	VT3002-1-2X/32D
					VT-VSPD-1-2X/	Card	Digital	30523	VT 3002-1-2X/64G
DBETR	1X	29166	1	6	VT-MRPA1-100-1X/	Module	Analog	30221	
					VT-VRPA1-100-1X/	Card	Analog	30118	VT 3002-1-2X/32D
					direct operated, block installati	on			
KBPS.8A	Α	18139-04	1		VT-SSPA1-5-1X/	Plug	Analog	30116	
					oilot operated, subplate mounti	ng			
		29160	1	10; 25	VT-SSPA1-1-1X/	Plug	Analog	30116	
DBE(M)	5X				VT 11131-1X/	Module	Analog	29865	
					VT-VSPA1-1-1X/	Card	Analog	30111	VT 3002-1-2X/32D
					VT-VSPD-1-2X/	Card	Digital	30523	VT 3002-1-2X/64G
DBE(M)	ЗX	29142	1	32	VT-SSPA1-1-1X/	Plug	Analog	30116	
					VT 11030-1X/	Module	Analog	29741	
					VT 2000-5X/	Card	Analog	29904	VT 3002-1-2X/32D
					VT-VSPA1-1X/	Card	Analog	30111	VT 3002-1-2X/32D
					VT-VSPD-1-2X/	Card	Digital	30523	VT 3002-1-2X/64G

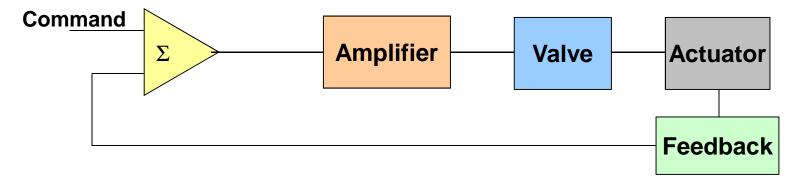


Systems

Control Valves and Systems

Closed Loop Applications

Rexroth Bosch Group


Moving to Closed Loop

Closed Loop Structure

- Closed Loop means automatic regulation of
 - Position
 - Force
 - Pressure
 - Velocity
 - Etc...

Controller

 Constant correction occurs from error generated

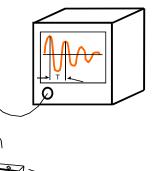
Closed Loop

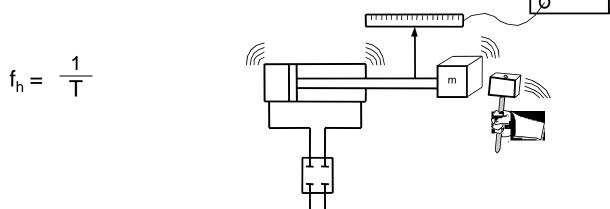
71

RE 08200 Position Control - Engineering Tool

Valve Matrix & Project Worksheet (suitable for Hyvos simulation)

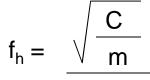
RE 08200 Position Control – Engineering Tool

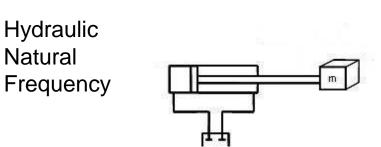

Valve Matrix

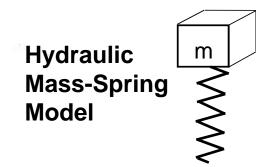

	trix of pro	portional direction	al valv	es							
							Typical application ²				
Valve model		Nominal flow	Nominal ∆p (bar)	Data sheet RE	Overtap compensation (with E, W spool)	Valve dynamics (natural frequency)	Open control loop	Closed-loop position control		Closed- loop	
		(l/min)						With low preci- sion	With high pre- cision	pres- sure control	
Direct operated	4WRA(E)	Size 6: 7, 15, 30 Size 10: 30, 60	10	29055	Yes	Very low	\checkmark	V	STOP	STOP	
	4WRP(E)	Size 6: 8, 18, 32 Size 10: 50, 80	10	29022 29025	Yes	Low	\checkmark	\checkmark	5709	5109	
	4WRE(E)	Size 6: 4, 8, 16, 32 Size 10: 25, 50, 75	10	29061	No	Medium	\checkmark	\checkmark	\checkmark	\checkmark	
	4WRSE	Size 6: 4, 10, 20, 35 Size 10: 25, 50, 80	10	29067	No	High	STOP	▼	\checkmark	\checkmark	
	4WRPE(H)	Size 6: 2, 4, 12, 24, 40 Size 10: 50, 100	70	29035 29037 29028 29032	No	High	STOP	▼	\checkmark	\checkmark	
	4WRREH	Size 6: 4, 8, 12, 24, 40	70	29041	No	Very high	STOP	-	\checkmark	\checkmark	
	4WS(E)2E	Size 6: 2, 5, 10, 15, 20 Size 10: 10, 20, 30, 45, 60, 75, 90	70	29564 29583	No	Very high	5109		\checkmark	\checkmark	
	4WRZ(E)	Size 10: 25, 50, 85 Size 16: 100, 150 Size 25: 220, 325 Size 32: 360, 520 Size 52: 1000	10	29115	No	Very low	\checkmark	▼	STOP	STOP	

Hydraulic Response of Cylinder

- Closed Loop Hydraulic Response Could Be Tested
- f_h = Number of Oscillations per Second
- T = Time for one cycle (sec)
- This does not include the Control Valve response
- The amplitude of oscillation decreases due to Damping (resistance, friction)

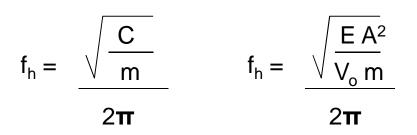





Modeling a Cylinder

- Closed loop performance depends on valve and cylinder
 - Hydraulic Natural Frequency f_h (simplified as a mass-spring model)
 - C: Spring Constant of Fluid under Compression (fluid on each side of the piston acts like a spring)
 - m: Moving Mass

2**π**



Modeling a Cylinder System

- Spring Constant C (Hooke's Law)
 - $C = \Delta x$ Displacement of Spring
 - F_x Force acting on Spring

$$\Delta x = \Delta V = P A$$

$$p = \frac{\Delta V E}{V_o}$$

Calculations can get complicated Results are only approximate

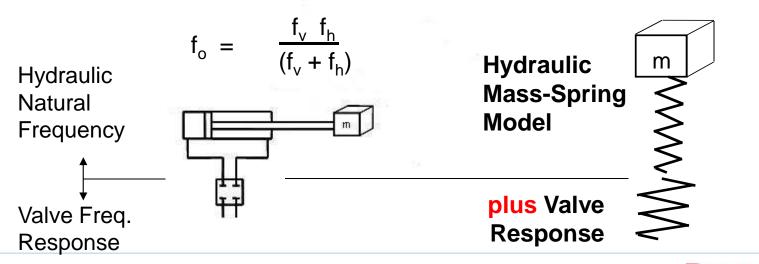
 $f_h = frequency of spring-mass$ model (hydraulic cylinder)

 ΔV = Volume change in cylinder

F = Bulk modulus of fluid

 V_{o} = Volume of trapped fluid

= effective mass m

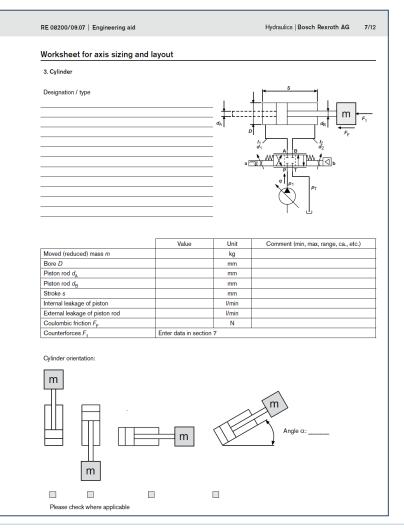

 2π radian/sec = 1 Hz

75

Modeling a Cylinder and Valve

- Closed loop response f_o depends on valve and cylinder
 - Hydraulic Natural Frequency f_h (simplified as a mass-spring model)
 - C: Spring Constant of Fluid under Compression (fluid on each side of the piston acts like a spring)
 - m: Moving Mass
 - Valve Frequency Response f_v (from data sheet, Bode plot)

Rexroth


Bosch Group

Axis Worksheet

- Define Customer and Application goals
- Cylinder Parameters
- Cylinder Orientation
- Moving Mass
- Frictions

77

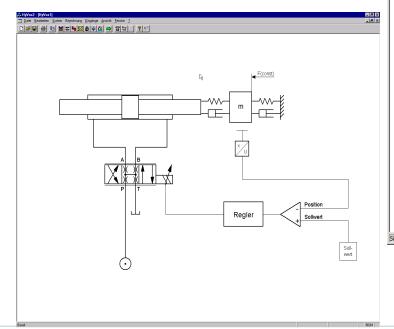
Axis Worksheet

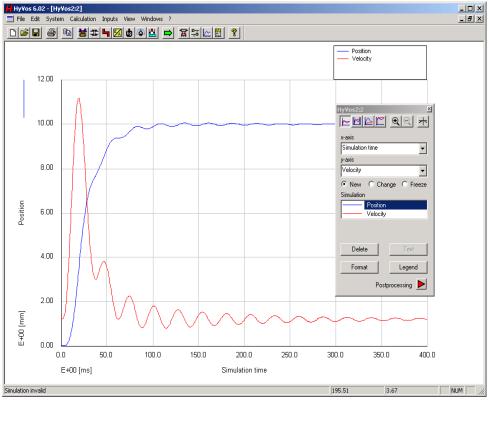
- Piping Parameters
- Supply Pressure
- Opposing Forces or Force Profile

12 Bosch Rexroth AG Hydra	aulics		Engineering aid RE 08200/09.
orksheet for axis sizing a	and layout		
. Piping			
	Value	Unit	Comment (min, max, range, ca., etc.)
Pipe length / ₁		mm	
pe length I ₂		mm	
Pipe diameter d ₁		mm	
pe diameter d ₂		mm	
ressure supply			
	Value	Unit	Comment (min, max, range, ca., etc.)
stem pressure p ₁ (at valve)		bar	
ank pressure p _T		bar	
x. pump flow q		l/min	
+ F ₁ 		-++++	+++++++++++++++++++++++++++++++++++++++
ndication of counterforces F_t as a function of counterforces, which result for there are several load cases, base bo not forget the unit of the force (N Jse this diagram or an additional page	om the process (do the engineering wor or kN)!	not specify cour	

Rexroth Bosch Group

Axis Worksheet


- Command Profile
- Type of Feedback
- Desired Accuracy
- Position vs. Time Diagram
- Desired Velocities
- Acceleration Limits
- Desired Cycle Time


RE 08200/09.07 | Engineering aid Hydraulics | Bosch Rexroth AG 9/12 Worksheet for axis sizing and layout 8. Command values Type of open/closed-loop control: (Open-loop controlled operation, position, or other): Feedback sensor: Feedback resolution (incremental) or output of voltage/current Required positioning accuracy: V2 t2 Parameter Value Comment (min, max, range, ca., etc.) Unit Distance between piston - cylinder cap x1 mm Starting point of the movement Rapid advance speed v1 mm/s Rapid advance distance s. mm Rapid advance time t. s Advance speed v, mm/s Advance distance s mm Advance time t s Rapid return speed v₃ mm/s Rapid return distance $s_3 = s_1 + s_2$ mm Rapid return time ta s Max. acceleration a1 mm/2Max. deceleration a₂ mm/2 Cycle time (for cyclical movements) s Important: - The table is only valid for closed-loop position controls; for other types of control use a separate, adapted sheet. - For complex multi-step movements, continue the table accordingly

> Rexroth Bosch Group

Hyvos simulation analysis

 For critical designs, use simulation to confirm proper valve selection and system response

RE 0800 Position Control – Engineering Tool

Hyvos simulation analysis

- Collect all relevant machine information (Hyvos worksheet or RE 08200)
- Your system design should already use much of this information
- Critical systems can be confirmed by simulation.

Updates

Other Updates

Update

Hydraulic Training

www.boschrexroth-us.com/hydtraining

Principles of Hydraulics (POH)

Jan 23–27, 2012	BAVTS (PA)
Feb 13–17, 2012	BAVTS (PA)
Mar 12–16, 2012	BAVTS (PA)
Apr 16-20, 2012	BAVTS (PA)
May 14–18, 2012	BAVTS (PA)
Jun 11-15, 2012	BAVTS (PA)
Jul 16–20, 2012	BAVTS (PA)
Aug 13–17, 2012	BAVTS (PA)
Sep 10-14, 2012	BAVTS (PA)
Oct 8-12, 2012	BAVTS (PA)
Nov 12-16, 2012	BAVTS (PA)
Dec 3-7, 2012	BAVTS (PA)

Maintenance, Repair & Set-up of Industrial Hydraulic Systems (MRS) Prerequisite: POH

Jan 30–Feb 3, 2012	BAVTS (PA)
Mar 5–9, 2012	BAVTS (PA)
Jun 18-22, 2012	BAVTS (PA)
Sep 24-28, 2012	BAVTS (PA)
Nov 5-9, 2012	BAVTS (PA)

Fundamentals & Servicing of Proportional Valves (FSP) Prerequisite: POH

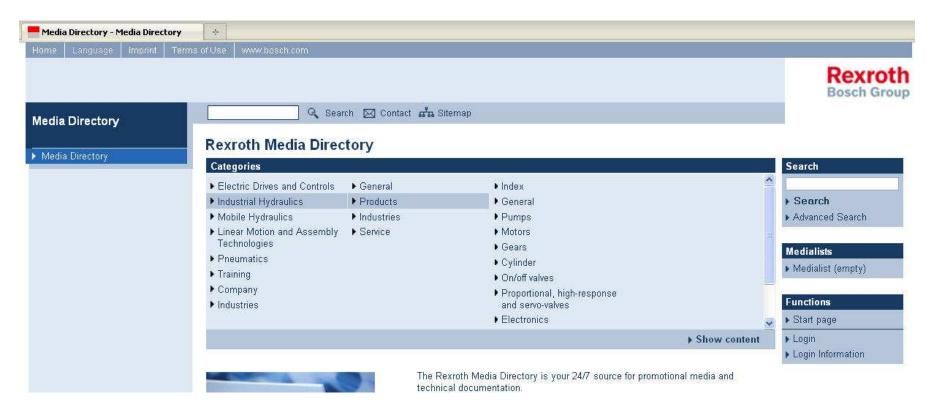
Mobile Hydraulic Teo	hnology (MHT)
Apr 23–27, 2012 Oct 15–19, 2012	BAVTS (PA) BAVTS (PA)

Feb 6–10, 2012 BAVTS (PA)

Maintenance, Repair & Set-up of Mobile Hydraulic Systems (MRSM) Prerequisite: POH or MHT					
Mar 26–30, 2012	BAVTS (PA)				
Proportional and Servo Circuit Design (PSD) Prerequisite: DCH					
Jul 30–Aug 3, 2012	BAVTS (PA)				
Pump and Controls, Open Loop (PCO) Prerequisites: POH <u>and</u> MRS					
May 7–11, 2012	BAVTS (PA)				
Aug 6–10, 2012	BAVTS (PA)				
Pump and Controls, Closed Loop (PCC) Prerequisites: POH <u>and</u> MRS					
Aug 27-31, 2012	BAVTS (PA)				
Design Considerations for Industrial Hydraulic Systems (DCH) Prerequisite: POH					
Jun 25-29, 2012	BAVTS (PA)				
Electronic Controls for Hydraulic Systems (ECH) Prerequisite: PSD					
Sep 17-21, 2012	BAVTS (PA)				
Design Consider Mobile Hydraulic Sys Prerequisite: POH					

Oct 29-Nov 2, 2012 BAVTS (PA)

Hydraulics Technical Training Schedule – 2012


Rexroth

Bosch Group

Update

Documentation Resource

www.boschrexroth.com/MediaDirectory

Update

Documentation Resource

www.boschrexroth.com/MediaDirectory

	Advanced Search			×		
Media Directory - Media Dire	Rexroth Media Directory					
	Advanced Search					Rexroth Bosch Group
Media Directory				l		
Media Directory	Search: Title, texts and descriptions document numbers Search only in current catego Only period: 10 v/ 20		DT4" but further "CGT4" ind "A4VG Series 40"			Search
	Filter results for language					▶ Advanced Search
	☐ de-DE ☐ de-AT ☐ et-EE ☐ en-GB ☐ et-GR ☐ fi-FI ☐ bg-BG ☐ en-AR ☐ fr-BE ☐ cs-CZ ☐ en-US ☐ fr-FR ☐ da-DK ☐ es-ES ☐ ga-IE	hu-HU is-IS is-IS is-IS it-IT it-IT it-IT in-BE ko-KR inI-NL	□ no-NO □ ru-RU □ pl-PL □ sk-SK □ pt-BR □ sl-St □ pt-PT □ sv-SE □ ro-RO □ tr-TR	□ zh-CN		Medialists ▶ Medialist (empty)
	Filter results for media type					Functions
	Advert Broschure CAD files Catalog Data Sheet EC-Declaration	Libary Magazine Miscellaneous Multimedia Poster Presentation Material	Ring bind Safety Instructions Sales Information Software Spare Part List Technical Information	1 7	Show content	 Start page Login Login Information
	Firmware / Software Descriptio	Price List Project Planning Manual	Training Manual			
	Index	Project Planning Manual Reference Book Release Notes				Rexroth
85 Neal Hanson 3/18/ distribution, as well	▶ Reset) Subr	nit search query		Bosch Group

Thank You

Neal Hanson | 3/18/2011 | Product Management | © Bosch Rexroth AG 2010. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

86